ENERGY TRANSFER BY SPECTRAL-LINE RADIATION

Yu., D. Shmyglevskii

The transfer of radiant energy in moving media is described by a set of integrodifferential equations.
The integral term in these equations necessitates an enormous number of calculations, In three-dimension-
al or even axisymmetric flows it is necessary to evaluate a quadruple integral at each point of space.

In this paper we consider the case of local thermodynamic equilibrium, assuming that the spectral
lines are both temperature- and pressure-shifted. The absorption coefficient of the gas is taken in idealized
form, which substantially simplifies radiative heat transfer and enables us to integrate explicitly the trans-
fer equation, In the case of spherical symmetry, which is considered as an example, the simplification is
greater still and leads to differential equations without the integral terms. If radiation and absorption occur
in a finite number of spectral lines, the resultant amounts of heat received by a particle due to radiation can
be found by simple summation over the characteristic line frequencies. This representation of the absorp-
tion coefficient can be used as a basis for numerical methods.

1. The motion of a radiating ideal gas in the case of local thermodynamic equilibrium is described by
the following system:

9 : 3 1 '
GrHdivey=0, Z+(v-V)v+Vp=0

%(%’2—+pi>+divpv<f2i+ﬂ>: Q (1.1)

where t is time, v is the velocity vector, p is density, p is pressure, T is temperature, i is the internal
energy per unit mass, and H is the enthalpy per unit mass.

The radiant energy flux per unit volume in the case of continuous functions is [1]

o0 2T T <0
0 = {Vond,sin® a0 dpdv — hap | #,B, dv (1.2)
000 . o, 0
'E;V—'T; :Jv_ Bv (1.3)

where the last differential corresponds to the first integral, the next-to-last differential corresponds to the
second integral, and so on. The quantities s, g, and ¢ are polar coordinates (s = 0) with origin (s = 0) at a
given point of three-dimensional space; v is the frequency; n, is the absorption coefficient at the particular
frequency; J, is the intensity of the radiant energy flux at frequency v along the ray 6§ = const, ¢= const in
the direction toward a given point; and B,, is the ratio of the emission and absorption coefficients at the
frequency ¥. The intensity J, is determined using the transfer equation (1.3) and the boundary condition
which depends on the particular problem. The signs in Eq. (1.3) and in the corresponding equations in [1]
are different because here we are considering the radiant energy flux in the direction of decreasing s,
whereas in [1] the flux is in the opposite direction. In the case of local thermodynamic equilibrium
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where h is Planck's constant, k is Boltzmann's constant, and ¢ is the speed of
light,

The quantity Q gives the energy received by a particle due to radiation.
The first term on the right-hand side of Eq, (1.2) represents the quantity of radiant
energy absorbed per unit volume, This is absorbed from the energy which arives
along all directions with intensity J,,. Integration with respect to the frequency
yields the total amount of absorbed energy. The second term on the right-hand
side of Eq. (1.2) gives the total amount of energy emitted per unit volume.

b e . T

Fig. 1 The transfer equation given by Eq. (1.3) shows that the intensity J,, in the
direction of decreasing s is increased by emission (the term B, ) and is reduced
by absorption (the term Jy). If there is no absorption, J, is determined by sim-
ple integration of —pwn,J;, with respect to s. On the other hand, if there is no
emission (J;, = 0), the homogeneous equation given by Eq. (1.3) determines the
change in the intensity J, due to absorption alone. These elementary remarks
will be used below.

The characteristic form of the dependence of ®y on v in the case of line
emission is shown in Fig. 1. Moreover, »®y, is also a function of temperature and
pressure, i.e.,®, =wv, p, T). The dependence on p and T changes the shape of
the curve (Fig. 1) and shifts it toward other frequencies. A review of line emis-
sion is given in [2].

In the case of narrow lines, i.e,, short v-interval in which w, # 0, the
simplest approximate approach to the calculation of the radiative energy transfer
is obtained by writing

% =K (p, T) 6§ v — v, (1.4)

where 0 (v —v,) is the Dirac d-function, and v = n(p, T) is the frequency cor-
responding to the center of gravity of the area between the %, curve and »n= 0
in Fig. 1 (this choice of the function # is made in order to be specific). At the
same time,

Kp, T)= S%\.dv
0

We assume that at least one of the derivatives 9n/ap, an/aT is not zero at each point,

The validity of the above form of %y and the error introduced by this representation is not investi-
gated here,

The transfer equation given by Eq. (1.3) can be formally integrated if we suppose that all the functions
in this expression, except Jp, are known [1]. At the point which we are considering, the quantity s is zero
(s is the radial distance in spherical polars). Suppose that the radial distance to the boundary of the region
is 8 (9, ¢). It follows that if we require the intensity J,,, arriving at s = 0, integration yields (& > 0)

S
TH0) = J,(8) e 1 Lim { B.e ™" O p g5’ (1.5)
-0 ¢
1,7 (0, s') =lim S %,p ds” (1.6)
E=0 ¢

The supersecript + refers to the limit € =+ 0, The quantity J,(S) in Eq. (1,5) is the intensity of
radiation of frequency v which travels away from the boundary of the region in the direction defined by
and ¢. The quantity 7, is called the optical thickness of the layer (0,s') at the frequency v.

If the boundary lies at infinity in the direction ¢, ¢ and the radiant energy flux propagating from
infinity toward the given point is zero, then

oC

T (0) = lim | Bye ™"y ds’ (1.7)

E—>0 ¢
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2, There is no difficulty in using Egs, (1.5) and (1.3) when the absorption coefficient is continuous,
When it is given by a é-function, the absorption of radiant energy in the neighborhood of a given point must
be found by calculating J,, separately before and after the flux passes this point, This requires a prelim-
inary determination of the optical thickness

8
L=170,8), B=1 (0,8 =lin | xpds’ (2.1)
g0

—€

Let us denote the point under consideration by a . In the space which we are considering we can draw
a plane through the ray ac leaving point ¢ with given ¢ and ¢. Let us suppose that this plane lies in the
plane of Fig. 2. The line of intersection of the boundary of the region with our plane will be denoted by fg.
Suppose further that the frequency vy = n(p, T) corresponds to p and T ata. Let us isolate a surface in the
three-dimensional region in which the frequency » is equal to the frequency n at a. The line of inter-
section of this surface with our plane will be denoted by ahbd. (If »; is independent of pressure,ahbd will be
an isotherm). We assume henceforth that the straight line ac cuts the surface of constant frequency v, at
two points. Generalization to more complicated cases presents no difficulty, but the analysis is more
difficult to interpret,

Gas in the neighborhood of point @ can absorb radiant energy only at the frequency v, corresponding
top, and T,. Therefore, we shall confine our attention to the emission at this frequency when we consider
point @ . For the sake of simplicity, the corresponding subscript is not written out explicitly. We can now
see the principle which follows from the chosen representation of the absorption coefficient given by Eq,
(1.4) and greatly facilitates the analysis of energy transfer processes: radiant-energy transfer inside the
region occurs only between points on surfaces with the same frequency v,.

Let us first calculate T, which is given by Egs. (2.1) and (1.6). If at the point t on the straight lineac
the function n{p, T) reaches a maximum or a minimum, then by using Eqs. (1.4) and (1.6) we can rewrite
Eq. (2.1) in the form

s, s
o =lim {Fas" + \Fas" (2.2)
€

>0 St

F=K(p,T)pd In(p, T) — v,

It follows from this formula that F = 0 for s = 0 and s # sy,, since at all other points emission and
absorption occur at other frequencies, and n(p, T) # v,

The integration is carried out along the straight line ac on which p = p(8), T = T(s),and p =p (s),
and, consequently, n is a function of s. Whenever n is a monotonic function of s, we can write

” an dT' on dp\—1
ds" = mdn, m:(%mﬂL%_dﬁ (2.3)

4

The quantities T and p are functions of time and of space coordinates. The total derivatives in the last
equation represent differentiation along a ¢ at given time. Substituting Eq. (2.3) in Eq, (2.2), and remember-
ing that ¥ = 0 for s = (0, s;), we obtain

n
C

T = S mKpbd (n — vy) dn

ke

where m, K, and p are now regarded as functions of n along tc.

Earlier we assumed that the straight line ac cuts the n = v, surface only at ¢ and b. If there are no
other surfaces with n = v, in space, then the equality n = v within the interval (0, s) is reached only at b.
Using the last equation, we have

T, = (mKp), sign (%)b = (m| Kp) (2.4)
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where we have used the fact that
S 8(n—v)dn=1
0

The derivative dn/ds is evaluated along the straight line ac.

Let us now find the quantity 7, given by Eq, (2.1). If we recall Eq. (2.2), we may write
Ty = lim S wPds" 11
e Y,

As hefore, we can write ds" in the form of Eq. (2.3) and, using Eq. (1.4), we find that

e

t=lim § mKopd (n —vy)dn+ 1, (2.5)

&0 ¥,

where n_g and n, are the frequencies n(p, T) corresponding to the values of p and T for s =—¢ and s =¢
on the straight line ac. If the functions p and T are continuous along this line, v, lies betweenn_; and ng.
Hence, the integral in the last equation can be evaluated, and Eq. (2.5) yields

Ty = (m| Kp)a + 1 (2.6)

When we calculate the total radiant energy flux Q we need to know J,, and, consequently, T, as well, for all
the values of # and ¢ used in Eq. (1.2). The quantity m, in the formula can conveniently be transformed to
a form which does not contain derivatives with respect to s in different directions. Using Eq. (2.3), we can
write m, (4, ¢) in the form

_ an an -1 (2.7
ma—[(VT‘S)yT—'I-(VP'S) Fg;’_] )
where s is a unit vector defined by 6, ¢ and drawn in the direction of increasing s; and the parentheses on
the right-hand side denote scalar products.

3. Let us now determine the intensity J; at the frequency vy, which arrives at point @. In the case of
bounded or infinite regions, this can be found from Eq, (1.5) or Eq. (L.7). The second term on the right-
hand side of Eq. (1,5) can be written as the sum of three integrals:

s §y—¢ 1,0, sb+s) s
lim SBve‘TV+(°’ o ds’ = lim S B s, ds’ — lim S B,de”™" 4 1im g B0 ds’
-0 ¢ g0 3 €0 o+, 8p—e) g0 sz"e

The integrands in the first and third terms on the right-hand side of this equation contain the factor
%, which is zero for s' < (0, sp) and s' & (sp, S). The other factors are bounded. It follows that the first
and third terms are zero, and if we evaluate the integrals, we obtain
— By lim [¢70 %) __ gm0 57y
€0

.I.
However, 7, (0, s+ &)= 'rV+ (0, 8) = T4, since ¥, is zero for s & (s}, Sl. Moreover, T +

(0, sp,— ) = 0, since the quantity », for s < (0, sp) is also zero, Finally, by comparing the last results
with Eq. (1.5), we conclude that

J.T(0) = J, (5) e -4 By (1 — e™™) (3.1)
where 74 is given by Eq. (2.4).
In the case of an unbounded region, and in the absence of radiation at infinity, Eq. (1.7) shows that
ST 0) =By (1 —e™) (3.2)

where we have used the fact that TV+ (0, «) =74 subject to the condition that the ray ac intersects the sur-
face with constant n(p, T} = v, only once.
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The first term on the right-hand side of Eq, (3.1) has the usual form and shows the reduction in the
radiant energy flux with the optical thickness of the layer. The second term on the right-hand side of Eq,
(3.1) and the right-hand side of Eq. (3.2) gives the resultant intensity Jy, produced by an element of the
surface with n = v,

Let us now determine the radiant-energy flux passing through point ¢ on the assumption that there is
no emission ata. Inthe e-neighborhood of a, the intensity J, will be determined by the homogeneous
variant of Eq. (1.3):

oJ,
as

= pKvJv
If we integrate along ac, we obtain
J7(0) = limJ, (— &) = J* (0) e o=
€0

where T, —74 is readily found from Eq. (2.6):
Ty = Ty — Ty = {jm] Kp), (3.3)

The quantity by which the intensity has been reduced on passing through a is given by the difference
AJ, (0) =J,% (0) =3, (0). For a bounded region we have

AT, (0) = (1 — e [J, (S) e + By (1 — e=9)] (3.4)
and when J,, (8) =0
AJ,(0) = By (1 —e™) (1 —e™) {3.5)
where we have used Egs, (3.1) and (3.2).
The quantity AJ, (0) is the intensity loss due to absorption at a.

4, Letusnow calculate the total radiant-energy flux Q; absorbed per unit volume. Let us suppose, to
begin with, that the absorption coefficient is continuous. The loss of intensity due to absorption in a given
direction over a path length ds at frequency v is dJ, =J yPnyds. The loss of intensity in a cylindrical
element of cross section do and height ds is Jypnydsde or J,pn, dw, where dw is the volume element.
The loss of intensity per unit volume is J,pny. To obtain the total amount absorbed per unit volume we
must integrate with respect to frequency and solid anglé. As a result, we obtain the first term on the right~
hand side of Eq. (1.2)

p#.Jysind dd do dv

ooy
Seo3d

0=

Let us now find the quantity Q for an absorption coefficient of the form given by Eq, (1.4). The
change of intensity in the cylindrical element of cross section do and height ds in the direction of —s at
frequency vy is AJ,(0)do . At all frequencies n(p, T) corresponding to values of p and T in the cylindrical
element, the change of flux is AJ), (0) |dnAs| do ds or AJ, (0) | m{ ™! dw, where m is given by Eq. (2.3).
The loss of flux per unit volume is AJy|{m| L. To obtain the total flux absorbed per unit volume we must
integrate with respect to the solid angle:

27

0. =\ {a7,0) [m [ sin® a0 dg
) _

oty

It is not necessary to integrate with respect to frequency in this case because one definite frequency
corresponds to each point in space.

The amount of energy Q, emitted per unit volume is calculated by integrating the second term on the
right-hand side of Eq. (1.2). This yields

Qz = Z-m:BvaKaPu
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The difference Q;—Q, gives the required quantity:

2

Q=

S

Deod

T

X

AJ,(0)}m | 'sin & d¥ dp — 4nB.Kp (4.1)

where all the variables are taken at ¢, AJ,, (0) is given by Eq. (3.4) or (3.5), and
the frequency at ¢ is taken from the equation v, = n(p, T),

|
I
i
I
|
1
!
|
1
1
!
!
I
v

=
TR

5. As an example, let us consider at a given instant the flow of gas in un-
bounded, spherically symmetric space. The meridional plane of this flow is shown
in Fig. 3, where the distance r between a and the center of symmetry O is ro. The
axis of the local set of spherical coordinates s, 6, ¢ coincides with the straight
/T™N line Oua.

At a given time t we know the functions p(r) and T(r), and hence, using Eq.
! (1.1), we know p(r) as well. Let us determine 7;=7,% (0, =) for IY4r =0 = 7,
by means of Eq. (2.4). The quantities K, p,8n/0 T, 9n/0 p depend only on r and t,
but are independent of 6§ and¢. At a given time the derivatives along the direct-
ion ab in Eq. (2.3) are

< f——

‘ or _ 9Ty dr  dp _ dpirt) dr

Fig. 5 Bs or ds * ds ar ds
where dr/ds is the derivative along ab. It follows from Fig. 3 that

r= Vﬂ - 2rgs cos O - ro?
so that

ar
ds

s+ rpcosd

_ (5.1)
rer, | Vo Zrvc0s B Fre

=—cos®
=g

and

. dn\{ dn OT on dp\-1
1, = — Kpsign d_r> WW+_3;E— sec ¥

(r = ro)
We emphasize that at time t all the quantities other than sec 8 are functions of r alone. It is there-
fore convenient to write

dn

Tn=—DN{(r)sec®, N(r)=Kp v

B @\'{,Kn‘) (5.2)

Let us determine T3 using Eq. (3.3) and the expression for m, in the form (2.7). When!/jr=<9 =nr
we have

3 dn . dm
s1gn s — SlgnT{;
and the result is

Ty =T O < B < 7)
The simplicity of this equation lies in that the acute angles between the chord ab and the tangent to
the circle r = r;, at the points ¢ and b are equal in absolute magnitude.

Let us now determine Q. Using Eqs, (2.7), (5.1), (3.5), and (4.1), remembering that AJ, (0) = 0, if
6 € [0, T/2) and substituting z = ~sec ¢, we find that
on 9T an 8p

1
ﬁ—ar—+$-a7‘Bv S (1 — V= ®y2eos § sin 9 d
n/2

SAJ,,(O){ml‘lsinﬁdﬁz—
0

dan

dn 4z
dr

[ee]
dn
— 9, Nz ~-2Nz __ Rt
=B S(i 2¢ +e )zs—Bv ar
1

v

[% — 2By (N) + F (21v)]_
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where

<0

_R; 92 _

E, (R):S B2 T 1E (B)=e R —RE,(R)
1 .

The function Ey(R) = Ei(R) is discussed in [3] and the function N is given by Eq. (5.2).

The integral with respect to § depends only on r and thus is independent of ¢. It follows that inte-
gration with respect to ¢ in Eq. (4.1) results in a factor of 2r and hence, finally,

(5.3)

Q =2aB, [% — 2E5(N) + Es (21v)] — 4atB,Kp

n
dr
where all the quantities are determined at given r and, moreover

dn

-1
N—=Kp \W

dn  dn OT an 9p
ar =737 5 T ap ar

In the energy equation for the system, which is given by Eq. (1.1), the quantity Q is now a function of
T, as given by Eq. (5.3).

6. If there is a number of emission and absorption lines in the spectrum of the gaseous medium (Fig.
4), the absorption coefficient can be written in the form

L
%= Ki(p, ) [v—v (p, T)]

1=1

where K; (p, T ) is the area between the corresponding part of the graph of w(v) and the » = 0 axis. The
values of v; will determine the abscissa of the centers of gravity of these areas.

The function %(v) shown in Fig. 5 (noncoherent emission) can also be represented approximately

in this form.

At point ¢ , the pressure and temperature are p and T, and the corresponding frequencies are
vy (0, T), ¥5(p, T)ye. oL, (p, T)e The gas at a can absorb and emit energy at these frequencies. Let us con-
sider the surfaces v = vy, ¥V =Vyy, ...,V =V1,,. Suppose that a ray defined by 6, ¢ cuts these surfaces at
points by, by, <., by, For each of these frequencies, surfaces with other frequency values will be optically
transparent. This means that at each frequency the intensity loss AJ,; (0) due to absorption at a can be
calculated as before from Eqgs. (3.5) or (3.4), where b is the point of intersection of the straight line ac with

the surface on which v has the corresponding value v;, = v; (pg, Tq).
As an example, when J,, (S) = 0, we have

AT (0) = By (1 — €71 (L — ¢7°9))

T o= (M| Kiplyy, Ta = ({my| Kip),

l=<8vl aT av, 6p>”1

aT s dp s

where the subscripts v; correspond to the frequency vy , and ¢ and b denote the corresponding points,
The loss AJ (0) due to absorption at a at all frequencies is given by the simple sum
AT (0) = AT, (0) - ATy (0) -+ ...k Jop (0)
The radiant-energy flux is now given by a formula analogous to Eq. (4.1):
L

\ AT (0) | [ sin & 40 dp — 4mp D) BuK,

1=1

Q =

T

M~
oY
Ty

1

but if there are a number of surfaces with the same value of v; we must sum over these surfaces as well.
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Note Added in Proof, The value of Q, given on p. 14 is incorrect, In fact, the amount of energy
emitted per unit volume is

Q, = 2aB,,|Vn [t — 2E; (0K | Vn| V)]

This result can be obtained by analogy with the case of the radiation emitted by a thin layer,
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